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Theory of structural trends within the sp bonded
elements

J C Cressoniv and D G Pettifor

Dcpartment of Mathematics, Imperial College of Science, Technology and Medicine,
London SW72BZ. UK

Received 21 August 1990

Abstract. A simple nearest neighbour orthogonal tight binding model is shown to explain
qualitatively the observed trends in structural stability within the sp bonded elements.
The relative stabilities were predicted by comparing the band energies directly, using the
structural energy difference theorem to prepare the bond lengths of the different structure
types appropriately. This allows the structural trends to be interpreted in terms of the
topology of the local atomic environment through the behaviour of the first few moments of
the densities of states.

1. Iniroduction

The sp bonded elements show a broad range of crystal structure (see, for example,
Donohue 1974). The first three groups (1, IT and I1I) usually take the close-packed
metallic structure types: face centred cubic (Fcc). hexagonal close packed (HCP). or body
centred cubic {Bcc). The elements of group 1V show the trend from three-fold co-
ordinated graphite through four-fold co-ordinated diamond to twelve-fold co-ordinated
Fcc on moving down the ¢olumn from carbon through silicon, germanium and tin to
lead. Apart from the dimeric form of nitrogen, the group V pnictides take structures
based on the stacking of three-fold co-ordinated buckled layers of atoms, whereas the
group VI chalcogenides take structures based on two-fold co-ordinated helical chains.
The group VII halogens crystallize as dimers which are held together on the lattice by
very weak van der Waals interactions.

Allan and Lannoo (1983) have shown that the nearest neighbour (n~) orthogonal
tight binding (TB) approximation can predict the general structural features which are
observed across the periodic table. Their predictions were made by computing the total
binding energy curves for a given sp bonded element with respect to the different
lattices., and then comparing the resultant binding energies at the theoretical equilibrium
separations. Their figure 7 shows the correct trend as a function of group number from
close-packed metallicstructures, through the four-fold co-ordinated diamond, the three-
fold co-ordinated buckied layer and the two-fold co-ordinated helical chain to the singly
co-ordinated dimer. In this paper we focus directly on the very small differences in
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energy between the different structure types by using the structural energy difference
theorem (Pettifor 1986). This gives the difference in energy between two structures as
the difference in their artractive band energies once the bond lengths have been adjusted
to show the same repulsive energy. This allows the structural trends to be interpreted in
terms of the topology of the local atomic environment through the behaviour of the first
few moments of the densities of states.

The plan of this paper is as follows. In section 2 we outline the TB model and show
how the hopping or bond integrals are fixed by the structural energy difference theorem.
In section 3 we examine the relative stabilities of structures with NN co-ordinations
ranging from 3 =1 (dimer), 3 =2 (zig-zag chain), 3 = 3 (single graphitic layer or
honeycomb lattice). 3 = 4 (both diamond cubic and diamond hexagonal), through to
5 = 12 (both close packed cubic and hexagonal). In addition we will consider the BcC
lattice with 3 = 14 corresponding to eight first- and six second-nns. In section 4 we
interpret the broad structural trends in terms of the behaviour of the third and fourth
moments of the densities of states. In section 5 we conclude,

2. The tight binding model

The total binding energy per atom of an elemental sp-bonded system may be written
within the TB approximation as the sum of three terms, namely

U= Urcp + Ubona Uprom- (1)

The repulsive energy U, is assumed to be pairwise in character (Ducastelle 1970), so
that

1 ! i
Urup = ﬁ 2 @(Rz’;’) (2)

where N is the number of atoms in the system. The attractive covalent bond energy U4
is usually evaluated within the two-centre orthogonal TB approximation (Slater and
Koster 1954). For the case in which all sites are equivalent apd the crystal field shifts are
orbital-independent

FE
N N D GE G)
a=5p
where n, (¢) are the local s, p electronic density of states, £, , are the effective s, patomic
energy levels, and & is the Fermi energy. The promotion energy U, is driven by the
change in relative s: p occupancy and is given by

Uprom = (Ep - ES)ANP (4)

where AN, is the change in the number of p electrons on bringing the reference atoms
together toform the bond. We should note that in practice equation (1) gives the binding
energy with respect to some reference free atom state which usually differs from the #rue
atomic ground state due to, for example, the neglect of spin-polarization or the shift in
atomic energy levels arising from the renormalization of the wavefunctions in the
bonding situation (see, for example, Sankey and Niklewski 1989).

The form of equation (1) may be justified from first principles by working within the
Harris-Foulkes approximation (Harris 1985, Foulkes and Haydock 1989) to density
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functional theory (see, for exampie, Sutton et a/ 1988 and references therein). It is
important to realize that the usual crystal field shifts in the atomic energy levels have
been removed from the band energy

gp
Ua= 3 [ enele) e (5
&=5.p

and grouped together with the first term Uy, (Allan and Lannoo 1983, Pettifor 1990).
The remaining bond ard promotion energies depend only on the electronic energies
relative to g, and g,. The energy difference &, = & — ¢, is itself assumed to be environ-
ment independent, the crystal field effects giving a uniform shift in the on-site energy
levels. It then follows from equations (3)-(5) that the change in the bond and promotion
energies on going from one structure type to another is simply equivalent to the change
in the band energy under the constraint that the atomic energy levels £, and ¢, are not

renormalized but are kept frozen. i.e.
AUpgng + AUpmm = (AUhund)Af‘s,p=U- (6)

This is consistent with the force theorem of Pettifor (1976, 1978} and Andersen (1980)
and the frozen potential theorem of Pettifor and Varma (1979).

The two-centre TB hopping integrals have been assumed to take the following simple
form

sso (R) —1.00
ppo (R) 2.3)
opr (R)[  —0.76
spo (R) 1.31

so that they display the same functional dependence on interatomic distance, namely
h{R). This is, of course, only a first approximation. as the angular character of the
orbitals can lead to quite different distance dependences for the o and & bonds (see, for
example, figure 4 of Allen er al 1986). The ratio sso: ppo: ppx:spo implicit in equation
(7} has been chosen equal to Harrison’s (1980) solid-state 1able values except for ppsr
which has been increased by 30%. This increase in ppmr was found necessary in order to
stabilize the close-packed structures with respect to the dimer for the case of the alkali
metals with N = 1 (Cressoni 1989).

The explicit form of the distance dependence 2(R) is not required within the present
NN model since we are using the structural energy difference theorem (Pettifor 1986,
section 7 Pettifor 1987) to predict the relative stability of the different structure types.
This theorem states that the total energy difference AU/ between two systems in equi-
librium under a binding-energy law of the type given in equation (1) i§, to first order in
AU/U,

h(R) (7)

AU= (&Uhund + AUpmm)AUR.',=(I- (8)

That is, the total energy difference is the difference in the bond plus promotion energies
provided the bond lengths have been adjusted so that the two lattices have identical
repulsive energies. It follows from equations (6) and (8) that

All= (AUband(ss’Ep))AUwme (9)

where the band energy is evaluated for the two lattices with the same values of the atomic
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energy levels ¢ and £, Thus, equation (9) generalizes the frozen potential theorem
(Pettifor and Varma 1979) to the case in which the lattices have different local co-
ordination and hence different NN bond lengths.

The pairwise repulsive potential ¢(R) has been taken to vary as the square of the
hopping integrals (Pettifor and Podloucky 1986), i.e.

®(R) = AR*(R) (10)

where A is a constant. This approximation appears to be a reasonable assumption for
sp-bonded systems. For example, Goodwin er af (1989) have recently fitted the local
density functional binding energy curves of diamond, $-Sn, s¢ and Fcc silicon (Yin and
Cohen 1982) with a short-ranged two-centre orthogonal TB model in which
¢(R) = [A(R)]*. ' R

The assumption of equation (10) allows us to write the total energy difference in the
form

AU= (AUhand(Estp))Ap;':U (11)

where i, is the second-moment of the local density of states, namely
A

T =J e (n,(e) + n,(e)) de. (12)

-

This follows since the second moment may be expressed in terms of all paths of length
two which start from and end on a given atom (Cyrot-Lackmann 1968), 50 that

Aty = Al 2 (R ) % AU, (13)
*RF= 4

The constraint Ag, = 0 fixes the relative values of the hopping integrals between the

different structure-types. Taking the simple cubic lattice with 5 = 6 as reference with an

equilibrium NN integral ki, we have from equation (13) that the appropriate hopping

integral for any other lattice with co-ordination 3 is given by

h,=(6/3)'""h. (14)

Thus. we now have the necessary hopping integrals to predict the relative stabilities of
different NN structure-types directly from equation (11) for any given choice of
£, = &, — &, For the BCC lattice with eight first- and six second-NNs we have chosen
h(R;)/h(R) =0.33 as found by the localized TB scheme of Andersen and Jepsen
(1984).

3. Crystal structure trends

The ground-state structures of the sp-bonded elements are shown in table I, The alkaline
earths Ca, Sr. Ba and Ra have been excluded as their structural stability is strongly
influenced by the proximity of the transition metal d bund (Skriver 1982}. The grouping
of Be and Mg with Zn, Cd and Hg is suggested by the phenomenological structure maps
for binary compounds (Pettifor 1988). We see the well known trend from close-packed
metallic co-ordination for N = 1,2, and 3 {(excluding hydrogen) to the open non-metaliic
structures for N =35, 6 and 7. In this paper we will examine the relative stabilities of
structures with NN co-ordinations ranging from 3 = 1 (dimer), 3 = 2 (zig-zag chain with
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Table 1. The ground-state structures of the sp bonded elements (Donohue 1974, Hafner
1989). (dimer), (octomer), (chain) or (layer) indicates that the structure comprises dimers,
octomers, helical chains or buckled layers weakly bound together in the solid.

1 2 3 4 3 6 7

H

(dimer)

Li Be B C N Q F

HCP HCP complex graphite  (dimer) (dimer) (dimer)
Na Mg Al Si P S Cl

HCP HCP FCC DIA (layer) (octomer)  (dimer)
K Zn Ga Ge As Se Br

BCC HCP complex Dia (layer) (chain) (dimer)
Rb Cd In Sn Sb Te [

BCC HCP FCT DIA (layer) (chain) (dimer)
Cs Hg T Pb Bi Po At

BCC BCT HCP FCC (layer) 5¢ (dimer)

90° bond angles), 3 =3 (single graphitic layer or honeycomb lattice}, 3 =4 (both
diamond-cubic and diamond-hexagonal lattices), 3 = 6 (simple cubic), 3 = 8 (simple
hexagonal}, through to 3 = 12 (both ccp and ideal HCP lattices). In addition we will
consider the BCC lattice with 5 = 14 corresponding to eight first- and six second-NNs.

Figures 1-3 show the pure s, pure p and hybridized sp (with &, = ¢, = 0) densities
of states for these different co-ordinations using the T8 hopping integrals defined by
equations (7) and (14). The energy is in units of s, throughout so that the sc s-band in
figure 1, for exampie, runs from — 6 to +6. The density of states was calculated using the
recursion method of Haydock er af (1972, 1975) to nine exact levels, The continuved
fraction was terminated with the square-root terminator for the case of a continuous
spectrum or the Turchi er af (1982) terminator for the case of a single band gap. The
band edges were chosen using the optimized prescription of Beer and Pettifor (1984)
which may be generalized to the case of a single band gap (Beer 1985, Cressoni 1989).
The densities of states for the zig-zag chain in figures 2 and 3 were evaluated using the
Turchi et af (1982) terminator for a double band gap, and display distinct bonding, non-
bonding and anti-bonding bands. It is intereting to note that the pure s bands for the
cubic and hexagonal diamond or close-packed lattices are identical as they have identical
moments, which has been proved by Burdett and Lee (1985). It is the angular character
of the valence orbitals which distinguishes between cubic and hexagonal systems within
a NN TB model,

Inorder tostudy the influence of the atomic energy level separation £, on the relative
structural stability, we have calculated the densities of states for values of

£ = £,/W,y = —tan(mn/2) {15)

with m = 0.2, 0.4, 0.6, 0.8 and 1.0, where W) is the simple cubic s bandwidth, namely
W, = 12h,. Figure 4 shows the resultant densities of states for m1 = 0.2, 0.4 and 0.6
corresponding to &;, = —0.32, —0.73 and —1.38 respectively. We see that for the largest
atomic energy level separation a gap has opened up between the s and p bands in all
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Figure 1. The s density of states for the different {attices in energy units of A, The broken
curves give the integrated density of states provided the numbers on the vertical scale are
multiplied by five.
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Figure 2. The p density of states for the different tattices in energy units of f,. The broken
curves give the integrated density of states provided the numbers on the vertical scale are
muftiptied by six.
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DENSITY OF STATES

ENERGY

Figure 3. The sp density of states for the different lattices in energy units of &, with £,= 0.
The broken curves give the integrated density of states provided the numbers on the vertical
scale are multiplied by eight.

structures. Interestingly the sp hybridization gap in the diamond lattice, which is seen
in the upper pane! of figure 4, is destroyed by the increased sp energy level separation
in the middle panel, before a gap reappears between the s an p band in the lower panel.
The densities of states for 71 = 1.0, corresponding to infinite sp energy level separation,
are given by the pure s and pure p bands in figures 1 and 2 respectively.

Figures 5 and 6 show the structural energy as a function of band filling for the different
structure types. We have defined the structural energy as the difference between the
band energy for a given structure and that corresponding to a reference skew-rectangular
density of states, whose first three moments gy, ¢, and u- are fixed by the structural
energy difference theorem through equartions (11)-(14} and p; is chosen equal to that
for the sc lattice. Comparing the band energies with the skew-rectangular reference
aliows the very small energy differences between the different structure types to be
displayed more clearly. We should, however, note that for the case £, = —1.38, where
the s and p bands have split apart, a single skew-rectangular band with the appropriate
ns/ud? is not possible and we have therefore taken the average band energy of all the
different structures as reference. The BCC structural energy curves, corresponding to
h(R,)/h(R,) = 0.33, follow the curves for the close-packed structures. However, since
they nowhere have the lowest energy, we have omitted them from figures 5 and 6 for
clarity.

The lower panel of figure 7 shows the predicted domains of structural stability
within an (&, N) structure map. For &,=0 we see the structure trends from
FCC - HCP — FCC — HEX — honeycomb — diamond cubic — honeycomb —
simple cubic — zig-zag — dimer which correlates with the structural energy curves of
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figure 5. For &, = == we see the trend from close-packed — zig-zag — dimer — zig-
zag— SC— FCC— HCP— FCC— diamond hexagonal — diamond cubic — zig-zag —
simple cubic — dimer — sC. This correlates with the predictions of figure 5 for the pure
$ band from N equals 0 — 2 and for the pure p band from N equals 2— 8.

The upper panel of figure 7 shows the experimental ground state structures of the sp-
bonded elements within a (&,,. V) structure map. The values of the atomic energy level

J € Cressoni and D G Petutifor
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DENSITY QF STATES

DENS|TY OF STATES

L

Figure 4. The sp density of states for the different lattices in energy units of Apfor £,, = —0.32
(upper panel), ~0.73 (middle panel) and =1.38 {lower panel} respectively. The diamond
cubic and FCC densities of states for £, = ~0.73 have been reduced by a factor of two and
the Foc density of states for £, = —1.38 by a factor of 1.5 in order to fit them within the
appropriate boxes. The broken curves give the integrated density of states provided the
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Figure 7. A comparisonoftheoretical (lower panel) and experimental (upper panel) structure
maps of the sp bonded elements.

difference £, were taken from Herman and Skillman (1963) with relativistic corrections
included. The values of W, the pure s band width with respect to the sc lattice, were
estimated using Harrison’s {1980) universal form for the sso hopping integral, namely

sso = —h(R) = —2.80/R? Ryd. (16)
It then follows from equation (14) that
W, = 12k, = 12(5/6)2h(R,) = 13.75 V?/R? Ryd 17)

where R, is the observed NN distance for a given element with local co-ordination .
This simple expression gives a qualitative estimate of the s band width of all the sp-
bonded elements except hydrogen. In the latter case we have taken W, equal to the
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2.5 Ryd which was evaluated recently by Skinner and Pettifor {1990} for hydrogen with
respect to the sc Jattice.

Figure 7 shows that the theory predlcts some of the broad features displayed by the
experimental structure map. In particular, beginning on the right hand side of the ﬁgure
where the assumptions of the TB model are most appropriate. we see that the theory
correctly predicts that the most stable structures of the halogens are built from dimers,
whereas those of the chalcogens are based on zig-zag linear chains (see, for example.
figure 3.12 of Harrison 1980). The exceptions are oxygen with its dimeric behaviour and
polonium with its s¢ structure (sulphur exhibits structures based on helical chains at high
temperatures). Nevertheless. we see that both dimeric and sc domains adjoin the
theoretical zig-zag domain centred on N = 6. Relaxation of the simplifying constraint
that the repulsive pair potential varies as the square of the hoppingintegrals (see equation
{ 10} ) would change the theorctical predictions. a softer repulsive term favouring lower
co-ordinations. a harder repulsive term favouring higher co-ordinations (Abell 1985).

The theoretical predictions for the pnictides with N = 5 are very poor, although the
curves do predict the three-fold co-ordinated honeycomb (or graphite) lattice for small
valucs of &g. In retrospect a buckled three-fold co-ordinated layer should have been
used for comparison rather thaa the planar honeycomb lattice (see, for example , figure
& of Ailan and Lannoo 1983). The dimeric form of nitrogen, like oxygen, is probably
related to the relative steepness of the repulsive interaction to that of the hopping
integrals,

The group TVB elements are predxcted to change frorn the open four-fold co-
ordinated diamond cubic structure to the close-packed rwelve-fold co-ordinated FCC
structure as &,, becomes increasingly negative. This is consistent with the observation
that silicon, germanium and tin are diamond cubic whereas lead is Fcc, The latter has a
Jarger negative value of ¢, due to a 3 eV relativisitic contribution (Herman and Skiliman
1963) which weakens the strength of the sp® hybrids due to a sizeable positive promotion
energy (see equation (4)). Again the 2p element is exceptional, carbon taking the
graphite structure, Nevertheless, theoretically there are three-fold co-ordinated honey-
comb domains neighbouring the large diamond cubic domain centred on N = 4,

Even though the sp-bonded metals with N = 1. 2 and 3 are not expected to be
described accurately by a NN orthogonal T8 model, we see that the simple theory predicts
correctly the occurrence of close-packed structures in this region. Moreover, the trend
from HCP to FCC as NV increases across a period from the alkali metais and the trend from
FCC t0 HCP as &, becomes more negative down group 11IB is well reproduced. Note,
however, that the alkali metals potassium. rubidium and caestum are BCC, not HCP. a
fact which has been related to the presence of the d-band just above the Fermi energy
(Skriver 1982}. For large negative values of £,, we expect the dimer to be most stable for
& =1 as the s bonding dominates, in agreement with the upper panel of figure 3,
However, tooking at figure 7, the dimeric form of hydrogen is prabably also related to
a softer repulsive core than that assumed by ¢ (R) a[#(R)]* in the present theory (Abell
1985).

4. Interpretation in terms of moments
The broad behaviour of the theoretical structural energy curves in figures 5 and 6 can be

understood in terms of the moments of the local density of states (see, for example,
Cyrot-Lackmann 1968, Ducastelle and Cyrot-Lackmann 1971, Turchi and Ducastelle
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1985, Burdett and Lee 1985 and Ducastelle 1990 and references therein). As is well
known, the nth moment g, of the density of states associated with a given atom can be
related directly to the sum of all paths of length n which start from and end on that atom.

This is a very powerful result. For example, it immediately implies that all Jattices
which contain only even-membered rings will have all their odd moments vanishing so
that the resultant densities of states must be symmetric (assuming no on-site hopping
contributions which is true for £, =0, &, = 0 or £, = 0). This explains the symmetric
behaviour of the densities of states in figures 1, 2 and 3 for the zig-zag, honeycomb,
diamond and sc lattices which contain only even-membered rings. We see, on the other
hand, that the hexagonal, FCC, HCP and BCC lattices have densities of states skewed to
lower energies due to the presence of the odd three-membered rings and non-vanishing
third moments ;. This accounts for the asymmetric behaviour of the close-packed and
hexagonal structural energy curves in figure 5. Thus, we have the important result that
the cp structures are more stable than the more open structures for less than half-full
bands due to the presence of three-membered rings which are absent in the tatter
structure types. ,

The relative stability of different structure types with even-membered rings can
sometimes be inferred by looking at the relative strengths of their normalized fourth
moments (i, = u,/13. In table 2 we show the different types of paths which contribute
to the fourth moment of the different lattices including the 2D square lattice for later
comparison with the three-dimensional diamond lattice. We can write the fourth
moment with respect to a given site as

My = Zﬂim., (18)

where i runs over all the different types of four-path contributions about that site, and
r,and g, ; give the number of such contributions and the corresponding fourth moment
respectively. For example, on the three-fold co-ordinated honeycomb lattice there are
. two types of contribution, the one (/ = 1) carresponding to four hops back and forth
between neighbouring pairs, the other (i = 2) corresponding to four hops between three
atomic neighbours. It is easy to see that the former enters three times ¢ that n, = 3,
whereas the latter enters twelve times so that #, = 12, as given in table 2,

For the case of angularly independent s orbitals all types of paths have the same
weight sso* so that from equation (18)

s = (2 )/ 5 (19)

where the normalized weight of each path is unity and is thus independent of distance
or structure type. Summing the non-ring paths we have

ay=02- Irfg) + fji.ring (20}

where the second term on the right hand side represents the ring contributions to the
normalized fourth moment. In figure 8 we plot 4, versus 3 for the different lattices, We
see that for the s orbital case (2 — 1/ ) is the sole contribution for the dimer, zig-zag,
honeycomb and diamond lattices, the large deviation from the dotted curve for the
square, SC, hexagonal and CP structures being due to the presence of four-membered
ring terms (see table 2). -

For the case of angularly dependent p orbitals the weight p. ;s a function not only of
the hopping integrals but also of the type of path i. If 8,is the relevant bond angle in the
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Table 2. Contributions to the normalized fourth moment g,/ (5 = 1) where i, = p./ul
and ;)5 the local co-ordination. #, and w,, which are defined after cquations (18) and (22},
give the number and normalized weight of the ith type of contribution to the fourth moment
respectively, The numbers in brackets in the last three columns give the rotal s, p or sp
normalized fourth moments for each steucture type.

W, w5’
5 Typei n, s P sp 5 i p splwA
1 1 I_j.ﬁno 1.000 1.000_j 1000: :0001@
(1.000) (1.000} (1.000)
2 2 L00D 1000 1.000- 05060 0500  0.500

4 1000 0224 0.167 1.000 0.224 0.167
(1.500y (0.724) (0.667)

3 1000 1000 1000 0333 033 0333

12 1000 0.418 0079 1333 0557  0.105
(1667} (0.890) (0.438)

4 1000 1.000 LO00 0.250 0250  0.250

000 0311 0084 1500 G467 0.1
(1750  (0.717)  (0.376)

~ 4 L0 1000 1.000 0.250 0250  0.250
8 1000 1000 0211 0500 0.500 0,006
16 1000 0224 0167  LOD0 0224  0.167

& 1000 0224 0134 0500 0.112  0.067
(2250)  (1.086} (0.590)

6 1000 1.000 100D 0.167 0167  0.167
12 L000 1000 0.211 0333 0333 0.070
a8 1000 0224 0.067 1333 0299 0.223

24 000 0.224 013 0.667 0.149 0089
(25000 (0.948) (0.549)

s =BT I

three atom contributions in table 2, then it follows from the angular dependence of the
energy integrals in Slater and Koster (1954} that

Ha; = [sso* + spo® + ppa? + 2sso?spo’ + 2ppri(spe’ + ppo?)]
+ 2spo’(ssa? — 2ssoppo + ppo?) cos 8,

+ [spo® + ppo? + ppa* + 2spo’ppo? — 2ppri(spo’ + ppo?)] cos? @,.
(21)

Figure 9 shows th¢ resultant angular dependence for the p and sp cases with £,=0,
which look very similar to the recent numerical results of Carlsson (1989) for the angular
dependence of an effective three-body potential derived from p or sp® hybrids. We see
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Figure 8. The normalized fourth moment d,/jk; Figure 9. The angular dependence of the three-
(3 = 1) versus the local co-ordination 5 for the atom fourth moment contribution, equation (21),
pure s, pure p, and sp (£, = 0) cases. The dotted for the pure s, pure p, and sp {£,, = 0) cases.

curve gives the s orbital result in the absence of
ring terms. The inset shows the oscillatory behav-
iour of the energy difference between two struc-
tures with different fourth moments such that
Sy > 0.

that in the pure p case 4, ; has a minimum corresponding to 90°, whereas in the sp case
theminimum iscloseto 117°. We will see that thisisimportant for stabilizing the diamond
structure with 8 = 109° or the graphite structure with & = 120° when the bands are half-
full.

Finally, we can generalize expression (19) to the sp case by writing

fafitg(3=1)= (2 ”:w)/52 (22)

where w, = u, ,/u, . It follows that the normalized weight @, for the two atom con-
tributions is unity, as shown in table 2. For the s case fiy( 3 = 1) = 1.0 so that equations
(19) and (22) are equivalent. Table 2 gives the corresponding normalized weights e, for
the different orbitals and types of path and their contributions to the sum in equation
(22). Figure 8 shows that the angular dependence of the p orbitals severely decreases
the value of fi,/ti,(5 = 1) compared with the s orbital case. In particular, we see that the
four-fold co-ordinated diamond lattice has the lowest value of ji, for both the p and sp
cases, whereas the dimer had the lowest value for the pure s case.

The value of u, reflects the shape of the density of states, in that a large value suggests
acentral peak orunimodal behaviour, whereas a smal} value suggests two well-separated
peaks or bimodal behaviour (see, for example, figure 1 of Gaspard and Lambin 1985).
This is illustrated by figure 1 for the s bands. As the local co-ordination 3 increases, u,
increases rapidly and the densities of states clearly change from having a bimodal to a
unimodal distribution. On the other hand, for the sp case as 3 increases p, decreases
until a minimum is reached for the diamond lattice (see figure 8). We see in figure 3 that
this corresponds to the opening up of a hybridization gap, thereby stabilizing the
diamond lattice for a half-full band. Thus, if two lattices have different normalized fourth
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moments, the Jattice with the smaller moment will be the more stable for approximately
half-full bands, whereas the lattice with the larger moment will be the more stable for
nearly full or empty bands, as is illustrated schematically by the inset in figure 8,

The structual trends shown in figure 5 are consistent with the behaviour of the third
and fourth moments. For less than half-full bands the CP structures are stabilized by the
presence of three-membered rings. For more than half-full bands the trends from the
dimer — zig-zag chain — sc for s orbitals, from diamond —zig-zag chain — sC — dimer
for p orbitals and from diamond — honeycomb — sC — zig-zag for the sp orbitals are in
the directjon of increasing fourth moment. The higher moments are necessary, however,
for predicting the precise shape of the curves in fgure 3. In particular, the relative
stability of the cubic versus hexagonal cp or diamond lattices requires a knowledge of y;
or u, which can be seen from the fact that the cubic and hexagonal curves cross each
other at least three or four times for the p and sp cases in figure 5 (Ducastelle and Cyrot-
Lackmann 1971). Finally, the qualitative features of the theoretical structure map in
figure 7 can be inferred by combining the predictions for £, = 0 with those for the pure
s and p bands corresponding t0 g,, = —%,

5, Conclusions

A simple NN orthogonal TB model has provided a qualitative explanation of the observed
trends in structural stability within the sp-bonded elements. The relative stabilities were
predicted by comparing the band energies directly, once the bond lengths had been
adjusted in accordance with the structural energy difference theorem. This allowed
the structural trends to be interpreted in terms of the topology of the local atemic
environment through the behaviour of the first few moments of the densities of states.
In particular. the trend from CP to open structures across a period was seen to reflect the
presence of the three-membered ring terms in the former structures and their absence
in the latter. The normalized fourth moments were found to be very dependent on the
angular character of the orbitals with important consequences for structural stability.
For example. thedimer is the most stable structure for the half-full s orbital case. whereas
the diamond lattice is the most stable structure for sp hybrids.

The simple model assumed that the repulsive pair potential varied with distance as
the square of the hopping integrals. This constraint would have to be relaxed to account
for the exceptions to the present theoretical predictions such as the occurrence of dimers
for the 2p elements nitrogen and oxygen where softer repulsive cores are required.
The model is currently being applied to d-bonded transition elements where a harder
repulsive core is required in order to stabilize only CP structures across the entire series
(Cressoni and Pettifor 1990).
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