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3 .  Phys.: Condens. Mauer3(1991) 495-511. Printed in the UK 

Theory of structural trends within the sp bonded 
elements 

J C Cressonif and D G Pettifor 
Department of Mathematics, Imperial College of Science, Technology and Medicine, 
London SW72BZ. U K  

Received ? I  August 1990 

Abstract. A simple nearest neighbour orthogonal tight binding model is shown to explain 
qualitatively the observed trends in structural stability within the sp bonded elements. 
The relative stabilities were predicted by comparing the hand energies directly, using the 
structural energy difference theorem to prepare the bond lengths of the diiferent structure 
types appropriately. This allows the structural trends to be interpreted in terms of the 
topologyofthr Ikml atomicenvironment through the behaviourofthe first few moments01 
the densities of states. 

1 .  Introduction 

The sp bonded elements show a broad range of crystal structure (see, for example, 
Donohue 1974). The first three groups (1. I1 and Ill) usually take the close-packed 
metallicstructure types: facecentredcubic(Fcc), hexagonalclose packed (HCP). or body 
centred cubic (BCC). The elements of group I\' show the trend from three-fold co- 
ordinated graphite through four-fold co-ordinated diamond to twelve-fold co-ordinated 
FCC on moving down the qolumn from carbon through silicon, germanium and tin to 
lead. Apart from the dimeric form of nitrogen. the group V pnictides take structures 
based on the stacking of three-fold co-ordinated buckled layers of atoms, whereas the 
group VI chalcogenides take structures based on two-fold co-ordinated helical chains. 
The group VI1 halogens crystallize as dimers which are held together on the lattice by 
very weak van der Waals interactions. 

Allan and Lannoo (1983) have shown that the nearest neighbour ( N N )  orthogonal 
tight binding (TB) approximation can predict the general structural features which are 
observed across the periodic table. Their predictionswere made by computing the total 
binding energy curves for a given sp bonded element with respect to the different 
lattices, and then comparing the resultant bindingenergies at the theoretical equilibrium 
separations. Their figure 7 shows the correct trend as a function of group number from 
close-packed metallicstructures, through the four-foldco-0rdinatt.d diamond, the three- 
fold co-ordinated buckled layer and the two-fold co-ordinated helical chain to the singly 
co-ordinated dimer. In this paper we focus directly on the very small differences in 
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energy between the different structure types by using the structural energy difference 
theorem (Pettifor 1986). This gives the difference in energy between two structures as 
the difference in their arrractiue band energiesonce the bond lengths have been adjusted 
to show the same repulsiue energy. This allows the structural trends to be interpreted in 
terms of the topology of the local atomic environment through the behaviou; of the first 
few moments of the densities of states. 

The plan of this paper is as follows. In section 2 we outline the TB model and show 
how the hopping or bond integrals are fixed by the structural energy difference theorem. 
In section 3 we examine the relative stabilities of structures with NN co-ordinations 
ranging from 5 = 1 (dimer), 8 1 2  (zigzag chain), 8 = 3  (single graphitic layer or 
honeycomb lattice). g = 4 (both diamond cubic and diamond hexagonal), through to 

= 12 (both close packed cubic and hexagonal). In addition we will consider the BCC 
lattice with 3 = 14 corresponding to eight first- and six Second-NNS. In section 4 we 
interpret the broad structural trends in terms of the behaviour of thc third and fourth 
moments of the densities of states. In section 5 we conclude. 

2. The tight binding model 

The total binding energy per atom of an elemental sp-bonded system may be written 
within the TB approximation as the sum of three terms. namely 

U = U,,, -t Uh""d + U,,,. (1) 

The repulsive energy Urcp is assumed to be pairwise in character (Ducastelle 1970). so 
that 

(2) 

whereNis the number ofatoms in the system. The attractivecovalent bondenergy U,,, 
is usually evaluated within the two-centre orthogonal TB approximation (Slater and 
Koster 1954). For the case in which all sites are equivalent and the crystal field shifts are 
orbital- independent 

U h n d  = I" ( E  - Fa)n,,(E)dE (3 ) 
o = r . p  

where ns,p(&) are the locals, pelectronic density of states, E,,,are the effective s, p atomic 
energy levels, and cF is the Fermi energy. The promotion energy Uprom is driven by the 
change in relative s: p occupancy and is given by 

where ANp is the change in the number of p electrons on bringing the reference atoms 
together to form the bond. Weshouldnote that in practiceequation (1) gives the binding 
energy with respect to sonie reference free atom state which usually differs from the true 
atomic ground state due to, for example, the neglect of spin-polarization or the shift in 
atomic energy levels arising from the renormalization of the wavefunctions in the 
bonding situation (see, for example, Sankey and Niklewski 1989). 

The form of equation (1) may be justified from first principles by working within the 
Harris-Foulkes approximation (Harris 1985, Foulkes and Haydock 1989) to density 
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functional theory (see, for example, Sutton et ai 1988 and references therein). It is 
important to realize that the usual crystal field shifts in the atomic energy levels have 
been removed from the band energy 

n=s.p J 

and grouped together with the first term Urep (Allan and Lannoo 1983, Pettifor 1990). 
The remaining bond and promotion energies depend only on the electronic energies 
relative to E$ and E ~ .  The energy difference elp = E, - E~ is itself assumed to be environ- 
ment independent, the crystal field effects giving a uniform shift in the on-site energy 
levels. It then followsfrom equations (3)-(5) that the changein the bond and promotion 
energies on going from one structure type to another is simply equivalent to the change 
in the band energy under the constraint that the atomic energy levels E, and .cp are not 
renormalized but are kept frozen, i.e. 

Auk,,  + AUpm = ( A U h a n d ) ~ r , . ~ = u .  (6) 

This is consistent with the force theorem of Pettifor (1976,1978) and Andersen (1980) 
and the frozen potential theorem of Pettifor and Varma (1979). 

The two-centre TB hopping integrals have been assumed to take the following simple 
form 

sso (R) 1 - 1.00) 

spa (R) J I .31 
so that they display the same functional dependence on interatomic distance. namely 
h(R). This is, of course, only a first approximation, as the angular character of the 
orbitals can lead to quite different distance dependences for the oand ,T bonds (see, for 
example, figure 4 of Allen et all986), The ratio sso: ppo: ppn;  spo implicit in equation 
(7) has been chosen equal to Harrison's (1980) solid-state lable values except for ppn 
which has been increased by 30%. This increase in ppn was found necessary in order to 
stabilize the close-packed structureswith respect to the dimer for the case of the alkali 
metals with N = 1 (Cressoni 1989). 

The expkir form of the distance dependence h(R) is not required within the present 
NN model since we are using the structural energy difference theorem (Pettifor 1986, 
section 7 Pettifor 1987) to predict the relative stability of the different structure types. 
This theorem states that the total energy difference AU between two systems in equi- 
librium under a binding-energy law of the type given in equation (1) is, to first order in 
AUIU. 

( A U h u a d  + Auprom)~u,,p=o. (8) 

That is, the total energy difference is the difference in the bond plus promotion energies 
provided the bond lengths have been adjusted so that the two lattices have identical 
repulsive energies. I t  follows from equations (6) and (8) that 

wherethebandenergyisevaluatedforthe twolatticeswiththesamevaluesofthe atomic 
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energy levels E, and E ~ .  Thus, equation (9) generalizes the frozen potential theorem 
(Pettifor and Varma 1979) to the case in which the lattices have different local co- 
ordination and hence different NN bond lengths. 

The pairwise repulsive potential q ( R )  has been taken to vary as the square of the 
hopping integrals (Pettifor and Podloucky 1986), i.e. 

J C Cressoni and D G Pettifor 

r p ( ~ )  = A P ( R )  (10) 
Nthere A is a constant. This approximation appears to be a reasonable assumption for 
sp-bonded systems. For example, Goodwin er al (1989) have recently fitted the local 
density functional binding energy curves of diamond, P-Sn, sc and FCC silicon (Yin and 
Cohm 1982) with a short-ranged two-centre orthogonal TB model in which 
p ( R )  x [h(R)]'.". 

The assumption of equation [lo) allows us to write the total energy difference in the 
form 

= (AUhand(Esr E p ) ) * p ? = "  (11) 

where I f 2  is the second-moment of the local density of states. namely 

L t 2  = j-: E + , ( E )  + np(E) )  dc. (12) 

This follows since the second moment may be expressed in terms of all paths of length 
two which start from and end on a given atom [Cyrot-Lackmann 1968). so that 

The constraint Ail2 = 0 fixes the relative values of the hopping integrals between the 
different structure-types. Taking the simple cubic lattice with 9 = 6 as reference with an 
equilibrium NN integral h,,, we have from equation (13) that the appropriate hopping 
integral for any other lattice with co-ordination 5 is given b~y 

h i  (6 /g)"?/7, , .  (14) 

Thus. we now have the necessary hopping integrals to predict the relative stabilities of 
different NN structure-types directly from equation (11) for any given choice of 
F , ~  = E, - cp. For the BCC lattice with eight first- and six Second-NNS we have chosen 
h(R2) /h (R l )  = 0.33 as found by the localized TB scheme of Andersen and Jepsen 
(1984). 

3. Crystal structure trends 

Theground-statestructuresofthesp-bondedelementsareshown in table 1. The alkaline 
earths Ca. Sr. Ba and Ra have been excluded as their structural stability is strongly 
influenced by the proximity of the transition metal d band (Skriver 1982). The grouping 
of Be and Mg with Zn. Cd and Hg is suggested by the phenomenological structure maps 
for binary compounds (Pettifor 1988). We see the well known trend from close-packed 
metallicco-ordination for iV = 1,2,and 3 (excludinghydrogen) totheopen non-metallic 
structures for N = 5, 6 and 7. In this paper we will examine the relative stabilities of 
structures with NN co-ordinations ranging from 3 = 1 (dimer), g = 2 (zig-zag chain with 
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Table 1. The ground-state structures oi the sp bonded elements (Donohue 1974. Hainer 
1989). (dimer), (octomer). (chain) or (layer) indicates that the structure comprises dimcn, 
octomers. helical chains OT buckled layers weakly bound together i n  the solid. 

I 2 3 4 5 6 7 

H 
(dimer) 

Li 
HCP 

Na 
HCP 

K 
BCC 

R b  
BCC 

cs 
BCC 

Be 
HCP 

Mz 
HCP 

Z" 
HCP 

Cd 
HCP 

Hg 
BCT 

B 
complex 

AI 
FCC 

Ga 
complex 

I" 
FCT 

TI 
HCP 

C 
graphite 

Si 
DIA 

Ge 
DIA 

Sn 
DIA 

Pb 
FCC 

0 
(dimer) 

S 
(octomer) 

Se 
(chain) 

Te 
(chain) 

PO 
sc 

F 
(dimer) 

CI 
(dimer) 

Br 
(dimer) 

I 
(dimer) 

At 
(dimer) 

90" bond angles), 8 = 3 (single graphitic layer or honeycomb lattice), g = 4 (both 
diamond-cubic and diamond-hexagonal lattices), g = 6 (simple cubic), a: = 8 (simple 
hexagonal), through to 5 = 12 (both CCP and ideal HCP lattices). In  addition we will 
consider the BCC lattice with g = 14 corresponding to eight first- and six second-NNs. 

Figures 1-3 show the pure s. pure p and hybridized sp (with E,  = sp = 0) densities 
of states for these different co-ordinations using the TB hopping integrals defined by 
equations (7) and (14). The energy is in units of h, throughout so that the sc s-band in 
figure 1, for example, runs from -6 to +6. The density of states was calculated using the 
recursion method of Haydock et al(1972, 1975) to nine exact levels. The continued 
fraction was terminated with the square-root terminator for the case of a continuous 
spectrum or the Turchi er a1 (1982) terminator for the case of a single band gap. The 
band edges were chosen using the optimized prescription of Beer and Pettifor (1984) 
which may be generalized to the case of a single band gap (Beer 1985. Cressoni 1989). 
The densities of states for the zig-zag chain in figures 2 and 3 were evaluated using the 
Turchi et a l ( l982)  terminator for a double band gap, and display distinct bonding, non- 
bonding and anti-bonding bands. It is intereting to note that the pure s bands for the 
cubicand hexagonaldiamondorclose-packedlatticesare identicalasthey have identical 
moments, which has been proved by Burdett and Lee (1985). It is the angular character 
of the valence orbitals which distinguishes between cuhic and hexagonal systems within 
a NN TB model. 

Inorder tostudy theinfluence oftheatomicenergylevelseparation qpon the relative 
structural stability, we have calculated the densities of states for values of 

fisp = Ehp/Wu = -tan(mx/2) (15) 

with m = 0.2,0.4,0.6,0.8 and 1.0, where W, is the simple cubics bandwidth. namely 
W ,  = 12h,. Figure 4 shows the resultant densities of states for m = 0.2, 0.4 and 0.6 
corresponding to zSp = -0.32, -0.73 and - 1.38 respectively. We see that for the largest 
atomic energy level separation a gap has opened up between the s and p bands in all 
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ENERGY 

Figure 1. The s density of states for the different lattices in energy units ofh,,. The broken 
curves give the integrated density of states provided the numbers on the wrtical scale are 
multiplied by five. 

I I NI I I I I I I I I 

w 
0 z i , z - -  bcr T i , .  - - J C I  

__ 

.5 0 5 -5 0 J 

ENERGY 

Figure 2. The p density of states for the different latlices in energy units of h(> The broken 
curves give the integrated density of states provided the numbers on the vertical scale are 
multiplied by six. 
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I I I 1 1 1  II I I I I  I I I I  I I1 I 

-5 0 5 -5 o J 

ENERGY 

Figure3. The sp density of states for the difierenr lattices in energy unitsof h,,with 2, = 0. 
The broken curvesgive the inte~~areddensityofstates provided the numberson the vertical 
scale are multiplied by eight. 

structures. Interestingly the sp hybridization gap in the diamond lattice, which is seen 
in the upper panel of figure 4, is destroyed by the increased sp energy level separation 
in the middle panel, before a gap reappears between the s an p band in the lower panel. 
The densities of states form = 1 .O, corresponding to infinite sp energy level separation, 
are given by the pure s and pure p bands in figures 1 and 2 respectively. 

Figures5 and6show the structuralenergy asafunction of band fillingfor the different 
structure types. We have defined the structural energy as the difference between the 
band energy for a given structure and that corresponding to a referenceskew-rectangular 
density of states, whose first three moments pu, p L I  and p 2  are fixed by the structural 
energy difference theorem through equations (11)-(14) and p ,  is chosen equal to that 
for the sc lattice. Comparing the band energies with the skew-rectangular reference 
allows the very small energy differences between the different structure types to be 
displayed more clearly. We should, however, note that for the case E,, = -1.38, where 
the s and p bands have split apart, a single skew-rectangular band with the appropriate 
p3/p:/2 is not possible and we have therefore taken the average band energy of all the 
different structures as reference. The BCC structural energy curves, corresponding to 
h(R,)/h(R,) = 0.33, follow the curves for the close-packed structures. However, since 
they nowhere have the lowest energy, we have omitted them from figures 5 and 6 for 
clarity . 

The lower panel of figure 7 shows the predicted domains of structural stability 
within an (zSp, N) structure map. For E,, = 0 we see the structure trends from 
FCC -+ HCP + FCC + HEX + honeycomb -+ diamond cubic -+ honeycomb + 
simple cubic+ zig-zag+ dimer which correlates with the structural energy curves of 
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ENERGY 

40 0 0 
ENERGY 

Figured. Thespden,iryofrtaiesfor the diifercnt larticesinenergyunitsofh,~iorE,, = -0.32 
(upper panel), -0.73 (middle panel) and -1.38 (lower panel) respectively. The diamond 
cuhic and FCC densities of states for sg = -0.73 have been reduced by a iactor oi two and 
the FCC density of states for B,, = - 1.38 by a factor of 1.5 in order to fit them within the 
appropriate boxes. The broken curves give the integrated density of states provided the 
numbers on the vertical scale are multiplied by sixteen. 

figure 5 .  For = -*we see the trend from close-packed-. zigzag+ dimer-, zig- 
zag- SC- FCC- HCP-. FCC- diamond hexagonal+ diamond cubic+ zig-zag+ 
simple cuhic- dimer- sc. This correlates with the predictions of figure 5 for the pure 
s band from I” equals 0 + 2 and for the pure p hand from Nequals 2 -. 8. 

The upper panel of figure 7 shows the experimenral ground state structures of the sp- 
bonded elements within a (S,,, N )  structure map. The values of the atomic energy level 
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>- 
W 
[L 
W z 1.0 
W 

J a 5 0.0 
c 

.00. *<* * < 011 -- Li 
I 

0 1 2 i 4 5 6 7 8  
I I I I  

BAND FILLING 

Figure 5. The structural energy in units of h,, as a function of band filling for the pure s, pure 
p. and sp (ZP = 0) cases. 
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, , .,.."I... ,.,. , ,.r..,, , ,, 
~~ 

BAND FILLING 
. , .... , , , ,  , ,.. 

dimer 

. . , . . . . .. . 
0 dio ( h )  ----- 

Figure 6. The structural energy in units of h,, as a function of band filling for f., = -0.32 
(upper panel), -0.73 (middlepane1)and -1.38(lower panel) respectively. 
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Figure7.Acomparisonoftheorefical (lowerpanel)andeiperimental(upperpanel)structure 
maps of the sp bonded elements. 

difference E . ~  were taken from Herman and Skillman (1963) with relativistic corrections 
included. The values of WO, the pure s band width with respect to the sc lattice, were 
estimated using Harrison’s (1980) universal form for the ssu hopping integral, namely 

SSLJ = -h(R) = -2.80/R2 Ryd. 

WO = 12ho = 12(g/6)1’2h(R,) = 13.7g1i2/R: Ryd 

(16) 

It then follows from equation (14) that 

(17) 

where R ,  is the observed NN distance for a given element with local co-ordination 5. 
This simple expression gives a qualitative estimate of the s band width of all the sp- 
bonded elements except hydrogen. In the latter case we have taken WO equal to the 
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1.5 Ryd which was evaluated recently by Skinner and Pettifor (1990) for hydrogen with 
respect to the sc lattice. 

Figure 7 shows that the theory predicts some of the broad features displayed by the 
experimental structure map. In particular, beginning on the right hand side of the figure 
where the assumptions of the TB model are most appropriate. we see that the theory 
correctly predicts that the most stable structures of the halogens are built from dimers, 
whereas those of the chalcogens are based on zigzag linear chains (see, for example. 
figure 3.12of Harrison 1980). The exceptions are oxygen with its dimeric behaviour and 
polonium with itsscstructure (sulphurexhibitsstructures basedon helical chains at high 
temperatures). Nevertheless. we see that both dimeric and sc domains adjoin the 
theoretical zigzag domain centred on N = 6. Relaxation of the simplifying constraint 
that therepulsivepairpotentialvariesas thesquareofthe hoppingintegrals(seeequation 
[IO)) would change the theoretical predictions. a softer repulsive term favouring lower 
co-ordinations. a harder repulsive term favouring higher co-ordinations (Abell 1985). 

The theoretical predictions for the pnictides with N = 5 are very poor, although the 
curves do predict the three-fold co-ordinated honeycomb (,or graphite) lattice for small 
valucs of iSp. I n  retrospect a hirckled three-fold Co-ordinated layer should have been 
used for comparison rather than the p/anor honeycomb lattice (see, for example, figure 
8 of Allan and Lannoo 1983). The dimeric form of nitrogen, Iike oxygen, is probably 
related to the relative steepness of the repulsive interaction to that of the hopping 
integrals. 

The group IVB elements are predicted to change from the open four-fold co- 
ordinated diamond cubic structure to the close-packed rwelue-fold co-ordinated FCC 
structure as t,p becomes increasingly negative. This is consistent with the observation 
that silicon. germanium and t in  are diamond cubic whereas lead is FCC. The latter has a 
larger negativevalueof  due toa3  eVrelativisiticcontribution (HermanandSkillman 
1963)which ueakensthestrengthofthesp'hybridsduetoa sizeablepositive promotion 
energy (see equation (U).  Again the 2p element is exceptional. carbon taking the 
graphite structure. Nevertheless, theoretically there are three-fold co-ordinated honey- 
comb domains neighbouring the large diamond cubic domain centred on N = 4. 

Even though the sp-bonded metals with N = 1. 2 and 3 are not expected to be 
describedaccuratelyhya~~orthogonal~~model. wesee that thesimple theorypredicts 
correctly the occurrence of close-packed structures in this region. Moreover, the trend 
from HCP to FCC as h'increases scross a period from the alkali metalsand the trend from 
FCC to HCP as t,p becomes more negative down group l l IB is well reproduced. Note, 
however. that the alkali mctuls potassium, rubidium and caesium are BCC. not HCP. a 
fact which has been related to the presence of the d-band just above the Fermi energy 
(Skriver 1982). For large negative Values of PSp we expect the dimer to be most stable for 
.V = 1 as the s bonding dominates. in agreement with the upper panel of figure 5 .  
However, looking at figure 7 ,  the dimeric form of hydrogen is probably also related to 
a softer repulsive core than that assumed by y(R) a[h(R)]'in the present theory (Abell 
1985). 

4. Interpretation in terms of moments 

The broad behaviour of the theoretical structural energy curves in figures 5 and 6 can be 
understood in terms of the moments of the local density of states (see, for example, 
Cyrot-Lackmann 1968, Ducastelle and Cyrot-Lackmann 1971, Turchi and Ducastelle 
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1965, Burdett and Lee 1965 and Ducastelle 1990 and references therein). As is well 
known, the nth moment pn of the density of states associated with a given atom can be 
related directly to thesumofallpathsof length n whichstart from andend on that atom. 

This is a very powerful result. For esample, it immediately implies that all lattices 
which contain only even-membered rings will have all their odd moments vanishing so 
that the resultant densities of states must be symmetric (assuming no on-site hopping 
contributions which is true for e, = 0, eP = 0 or elp = 0). This explains the symmetric 
behaviour of the densities of states in figures 1, 2 and 3 for the zig-zag, honeycomb, 
diamond and sc lattices which contain only even-membered rings. We see, on the other 
hand, that the hexagonal, FCC, HCP and BCC lattices have densities of states skewed to 
lower energies due to the presence of the odd three-membered rings and non-vanishing 
third momentsp;. This accounts for the asymmetric behaviour of the close-packed and 
hexagonal structural energy curves in figure 5 .  Thus, we have the important result that 
the CP structures are more stable than the more open structures for less than half-full 
bands due to the presence of three-membered rings which are absent in the latter 
structure types. 

The relative stability of different structure types with even-membered rings can 
sometimes be inferred by looking at the relative strengths of their normalized fourth 
moments Q4 = p i / / c $  In table 2 we show the different types of paths which contribute 
to the fourth moment of the different lattices including the ?D square lattice for later 
comparison with the three-dimensional diamond lattice. We can write the fourth 
moment with respect to a given site as 

!J4 = 2 17rP4.1 (16) 

where i runs over all the different types of four-path contributions about that site. and 
n,  and p.,,, give the number of such contributions and the corresponding fourth moment 
respectively. For example, on the three-fold co-ordinated honeycomb lattice there are 
two types of contribution. the one (i = 1) Corresponding to four hops back and forth 
between neighbouringpairs, theother ( i  = 2) corresponding to four hops between three 
atomic neighbours. I t  is easy to see that the former enters three times so that n ,  = 3,  
whereas the latter enters twelve times so that n 2  = 12, as given in table 2. 

For the case of u n g u l d y  independent s orbitals all types of paths have the same 
weight ssd so that from equation (18) 

where the normalized weight of each path is uni ty  and is thus independent of distance 
or structure type, Summing the non-ring paths we have 

F ;  = (2 - l!a) + QLl"g (20) 
where the second term on the right hand side represents the ring contributions to the 
normalized fourth moment. I n  figure 8 we plot Q4 versus for the different lattices. We 
see that for the s orbital case (2 - 11s) is the sole contribution for the dimer, zig-zag, 
honeycomb and diamond lattices, the large deviation from the dotted curve for the 
square. sc, hexagonal and CP structures being due to the presence of four-membered 
ring terms (see table 2). 

For the case of angu/ur/y dependent p orbitals the weight pa,, is a function not only of 
the hopping integrals but also of the type of path i. If 8, is the relevant bond angle in the 

- 
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Table 2. Contributions to the normalized iourih moment ti4/@, ( 8  = 1) where ,I, = p J p :  
and 9 IS the local co-ordinalion. n, and 0,. which are defined after equations (18) and (U),  
give the number and normalized weight of the ith type of contribution to the fourth moment 
respectively. The numbers in brackets in the last three columns give the m i d  s, p or sp 
normalized fourth moments for each structure type. 

. .,. 

. .. 
W, n,w,i 5 ?  

9 Typei n, s P SP s P SP 

- - 3 llW0 1.000 1.ow 0.504 0.500 0.500 2 -  - 
4 1.0(10 0.224 0.167 1.000 0.224 0.167 

(1.500) (0.724) (0.667) 
~~ - ~~ - - - 3 1.000 1.000 1.000 0.333 0.333 0.333 

/=== ~ I2 1.000 0.418 0.079 ~ 1.333 0.557 0.105 
~~ ~ ~~~~ ~ ~ ~ ~ ~~ , ~~ ~ 

3 

~ ~~~ 

(1.667) (0.890) (0.438) 

/== 24 i:Uw 0.311 0.0% 1.500 0.467 0.1z6 

J =  4 i.000 1.000 1.000 u.2~0 0.2.50 0 . ~ ~ 0  

- - 
1 =  4 I.UO0 1.000 1.000 0.250 0.250 0.250 

(1.750) (0.717) (0.376) - - 
-- .~ -- 

8 1.000 1.000 0.211 USUO 0.5IY.I U.106 7 I6 1.000 0.224 0.167 1.000 0.224 0.167 

. X  LOU0 0.224 0.134 0.500 0.112 0.067 

h =  6 1.000 I.M0 1.OUO 0.167 0.167 0,167 

(2,250) (1.I186) (0.590) 
- - 
-- - .- 

13 I.U00 1.0OU 0.211 0.333 0.333 0.070 7 48 I ~ M l 0  0.224 0.167 1.333 0.299 0.223 

24 1.000 0.224 0.134 0.667 0.149 0,089 
(2,500) (0.948) (0.549) U 

, . . ., , . .. , .. , , , , ., , 

three atom contributions in table 2. then it follows from the angular dependence of the 
energy integrals in Slater and Koster (1954) that 

Li4,, = [ s s d  + spo‘ + p p d  + 25so2spo’ + 2ppd(spo’ + ppo’)] 

+ 2spoqsso2 - 2Ssopp0 + ppo?)  cos e; 
+ [spo‘ + p p d  + p p d  + 2spa?ppo2 - 2ppn’(spo’ + ppo’)] cos2 0,. 

(21) 
Figure 9 shows the‘resultant angular dependence for the p and sp cases with E , ~ =  0, 
which look verysimilar to the recent numerical resultsof Carlsson (1989)for theangular 
dependence of an effective three-body potential derived from p or spp) hybrids. We see 
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Eigure 8. The normalized fourth moment &I& 
( 3  = 1) versus the local co-ordination 6 for the  
pure E, pure p, and sp (& = 0) cases. The  dotted 
curve gives the s orbital result in the absence of 
ring terms. The inset shows the oscillatory behav- 
iour of the energy difference between lwo struc- 
tures with different fourth moments such that 
6p, > 0. 
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Figure 9. The angular dependence of the three- 
atom fourth moment contribution. equation (21). 
for the pure s, pure p, and sp (& = 0) cases. 

that in the pure p case p4.i has a minimum corresponding to 90", whereas in the sp case 
theminimumisclose to 117". We willsee thatthisisimportant forstabilizingthediamond 
structure with 0 = 109" or the graphite structure with 0 = 120" when the bands are half- 
full. 

Finally, we can generalize expression (19) to the sp case by writing 

where w, = p4,,/p4.,. It follows that the normalized weight w ,  for the two atom con- 
tributions is unity, as shown in table 2.  For the s case &( s = 1) = 1.0 so that equations 
(19) and (22) are equivalent. Table2gives the corresponding normalized weights w, for 
the different orbitals and types of path and their contributions to the sum in equation 
(22). Figure 8 shows that the angular dependence of the p orbitals severely decreases 
the value of &/fi4( 8 = 1) compared with the sorbitalcase. In particular, we see that the 
four-fold co-ordinated diamond lattice has the lowest value of F4 for both the p and sp 
cases, whereas the dimer had the lowest value for the pure s case. 

ThevalueofG4reflectstheshapeofthedensityofstates, inthat alargevaluesuggests 
acentral peakor unimodal behaviour, whereasa small value suggests two well-separated 
peaks or bimodal behaviour (see, for example, figure 1 of Gaspard and Lambin 1985). 
This is illustrated by figure 1 for the s bands. As the local co-ordination 8 increases, p4 
increases rapidly and the densities of states clearly change from having a bimodal to a 
unimodal distribution. On the other hand, for the sp case as 3 increases p4 decreases 
until a minimum is reached for the diamond lattice (see figure 8). We see in figure 3 that 
this corresponds to the opening up of a hybridization gap, thereby stabilizing the 
diamond lattice for a half-full band. Thus, if two lattices have different normalized fourth 
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moments, the lattice with the smaller moment will be the more stable for approximately 
half-full bands, whereas the lattice with the larger moment will be the more stable for 
nearly full or empty bands, as  is illustrated schematically by the inset in figure 8. 

The structual trends shown in figure 5 are consistent with the behaviour of the third 
and fourth moments. For less than half-full bands the CP structures are stabilized by the 
presence of thrre-membered rings. For more than half-full bands the trends from the 
dimer + zig-zag chain + sc for s orbitals, from diamond -zig-zag chain - S C ~  dimer 
for p orbitals and from diamond - honeycomb -+ sc - zig-zag for the sp orbitals are in 
the direction of increasing fourth moment. The higher moments are necessary. however, 
for predicting the precise shape of the curves in figure 5. I n  particular, the relative 
stability of the cubic versus hexagonal CP or diamond lattices requires a knowledge of ps 
or p 6  which can be seen from the fact that the cubic and hexagonal curves cross each 
other at least three or four times for the p and sp cases in figure 5 (Ducastelle and Cyrot- 
Lackmann 1971). Finally, the qualitative features of the theoretical structure map in 
figure 7 can be inferred by combining the predictions for = 0 with those for the pure 
sand p bands corresponding to  E , ~  = -%. 

J C Cressoni aFid D G Pettifor 

5. Conclusions 

Asimple NN orthogonal-re model has provided aqualitativeexplanation of the observed 
trends in structural stability within the sp-bonded elements. The relative stabilities were 
predicted by comparing the band energies directly, once the bond lengths had been 
adjusted in accordance with the structural energy difference theorem. This allowed 
the structural trends to be interpreted in terms of the topology of the local atomic 
environment through the behaviour of the first few moments of the densities of states. 
In particular. the trend from CP to open structures across a period was seen to reflect the 
presence of the three-membered ring terms in the former structures and their absence 
in the latter. The normalized fourth moments were found to be very dependent on the 
angular character of the orbitals with important consequences for ~tructural stability. 
Forexamp1e.thedimeristhe most stablestructure for thehalf-full sorbitalcase,whereas 
the diamond lattice is the most stable structure for sp hybrids. 

The simple model assumed that the repulsive pair potential varied with distance as 
the square of the hopping integrals. This constraint would have to be relaxed to account 
for the exceptions to the present theoretical predictionssuch as the occurrence of dimers 
for the 2p elements nitrogen and oxygen where softer repulsive cores are required. 
The model is currently being applied to d-bonded transition elements where a harder 
repulsive core is required in order to stabilize only CP structures across the entire series 
(Cressoni and Pettifor 1990). 
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